乘方垛

        太垛迭单数而成。元垛迭根数而成。一乘方垛迭平方而成。二乘方垛迭立方而成。三乘方垛迭三乘方而成。四乘方垛以上可类推。又太垛递减一迭成元垛。元垛从顶起递去一层迭成一乘方垛。一乘方垛从顶起递去一层迭成二乘方垛。二乘方垛从顶起递去一层迭成三乘方垛。以上可类推。
        乘方垛有层数求积术:
        太垛层数即积数。
        元垛以层数为高。以三角一乘垛求积术入之
        一乘方垛有方一、隅一。方以层数为高,隅以层数减一为高。各以三角二乘垛求积术入之
        二乘方垛有方一、廉四、隅一。方以层数为高,廉以层数减一为高,隅以层数减二为高。各以三角三乘垛求积术入之
        三乘方垛有方一、上廉十一、下廉十一、隅一。方以层数为高,上廉以层数减一为高,下廉以层数减二为高,隅以层数减三为高。各以三角四乘垛求积术入之
        四乘方垛有方一、甲廉二十六、乙廉六十六、丙廉二十六、隅一。方以层为高,甲廉以层减一为高,乙廉以层减二为高,丙廉以层减三为高,隅以层减四为高。各以三角五乘垛求积术入之
        五乘方垛以上递增一廉。各廉之数详左表,馀法可类推。造表法:每格视上层左、右二格,左格系左斜下第几行,右格系右斜下第几行,各依行数倍之,相并即本格数
        

清·李善兰《垛积比类》卷二(《则古昔斋算学》)


        [注]①此为形如1p+2p+3p+…+np的级数,p=0,1,2,3,…即为太、元、一乘方、二乘方、三乘方……诸垛。②此即…(r+p-1),令p=1,2,3,…即为元、一乘方、二乘方……诸垛的情形。③此即令p=1,2,3,……即为元、一乘方、二乘方……垛的垛积。
        ④此表为:


        ⑤此指出上下层系数之间的关系


        【评】此为李善兰关于乘方垛求积术的系统论述。
        三角自乘垛者,三角垛逐层皆自乘也。子垛为一乘垛,逐层自乘之,共积丑垛为二乘垛,逐层自乘之,共积寅垛为三乘垛,逐层自乘之,共积卯垛,以下可类推。
        三角自乘垛有层求积术:
        子垛有方一、隅一,方以层为高,隅以层减一为高,各以三角二乘垛求积术入之
        丑垛有方一、廉四、隅一,方以层为高,廉以层减一为高,隅以层减二为高,各以三角四乘垛求积术入之
        寅垛有方一、甲廉九、乙廉九、隅一,方以层为高,甲廉以层减一为高,乙廉以层减二为高,隅以层减三为高,各以三角六乘垛求积术入之
        卯垛有方一、甲廉十六、乙廉三十六、丙廉十六、隅一。方以层为高,甲廉以层减一为高,乙廉以层减二为高,丙廉以层减三为高,隅以层减四为高,各以三角八乘垛术入之
        辰垛以下可类推。本表平列诸格即各垛方、廉、隅诸数也。
        

清·李善兰《垛积比类》卷三(见《则古昔斋算学》)


        [注]①三角自乘垛的通项为(fpr)2,其中fpr=r(r+1)(r+2)…(r+p-1)。令p=1,2,3,……便是子、丑、寅、卯垛。②此即著名的李善兰恒等式:
        ,其中,即二项式定理系数,当其中p=1,2,3,4,……便依次是子、丑、寅、卯垛的情形。③此即李善兰用三角垛求和公式得出的三角自乘垛求和公式:
        
        【评】李善兰恒等式与三角自乘垛求和公式均是李氏驰名中外的成果。李氏未给出该恒等式的证明。于是,证明该恒等式成为二十世纪许多数学家感兴趣的问题。就中以匈牙利数学家杜兰·保尔的证明(1954)比较有名。



分享到:

发布时间:2023-03-12
文章来源: 可可诗词网  https://www.kekeshici.com/
原文地址:https://www.kekeshici.com/shicidiangu/ciyu/224968.html,转载请保留。

Copyright © 2002-2017 可可诗词网 版权所有   
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
鄂ICP备2023021681号-1
友情链接:食功效